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ABSTRACT  

                The Cartan Evans identity is a new identity of differential geometry, and is the 

basis for the inhomogeneous field equation of Einstein Cartan Evans (ECE) theory. It is 

shown that it is a rigorous, self -checking, identity of differential geometry in the Riemannian 

manifold, and complete details of the proof are given for ease of reference.  
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1. INTRODUCTION 

                 The Cartan Bianchi identity {1} is an identity of differential geometry in the 

Riemannian manifold, and is well known and proven rigorously. It has been shown in this 

series of papers {2-10} that the Cartan Bianchi identity is a rigorous identity of the 

Riemannian manifold in which Einstein Cartan Evans (ECE) theory is defined. In previous 

work it has been reduced to a self checking identity. The latter consists of the cyclic sum of 

three curvature tensors on one side of the identity, and the same cyclic sum of the definitions 

of the same curvature tensors on the other side. Cartan reduced this exact tensorial identity of 

Riemann geometry to the elegant format of Cartan’s differential geometry in the Riemannian 

manifold {1}:  

                                                    D ^ �� : =  d ^ ��+ 	

� ^ �
                                   (1) 

                                                                             : = �

�  ^ �
                                                    (2) 

Here d ^ is the exterior derivative, ��is the Cartan torsion form, 	

�

 is the Cartan spin 

connection, �

�

 is the Cartan curvature form,  �
is the Cartan tetrad form, and ^ is the 

Cartan wedge product {1-10}. The Cartan Bianchi identity is valid in the Riemannian 

manifold, as is well known, and Cartan geometry in the Riemannian manifold is well known 

to be equivalent to Riemann geometry, thought to be the geometry of natural philosophy 

(physics).  

               Note carefully that the base manifold indices in eq. (1) are suppressed, as is the 

convention {1} in differential geometry. The reason is that the base manifold indices are the 

same on either side of any equation of differential geometry. The Cartan � index is the index 
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of a Minkowski spacetime, tangential to the base manifold at a point P. Cartan geometry is a 

pure geometry, it is coordinate independent and generally covariant. General covariance is 

the basic requirement of the philosophy of general relativity, as is well known. In ECE theory 

the Cartan Bianchi identity becomes the homogeneous field equation {2-10}. The latter has 

been developed in comprehensive detail in the 136 previous papers of this series, in form, 

tensor and vector notation in the Riemannian manifold of physics. Since Cartan geometry 

applies to the tangential, Minkowski, spacetime indexed � , it is valid for any base manifold 

in which a tangent spacetime may be defined at point P. Cartan geometry is therefore valid in 

any orientable manifold of pure mathematics, not just the Riemannian manifold of physics. In 

a non-orientable manifold of pure mathematics, such as a Möbius type or chiral manifold, a 

tangent spacetime may also be defined, but is not necessarily uniquely defined, as is well 

known in pure mathematics. These exotic manifolds of pure mathematics appear however to 

be irrelevant to physics because there is no experimental evidence that show that they must 

be preferred to the Riemannian manifold. In the Riemannian manifold in which is defined, 

the Cartan Bianchi identity is always rigorously true. Similarly the tetrad postulate is always 

rigorously true in the Riemannian manifold in which the tetrad postulate is defined. The 

torsion and curvature of ECE theory are objects of the Riemannian manifold. Cartan’s torsion 

form is a vector valued two-form {1 - 10} equivalent to the Riemannian torsion tensor. 

Cartan’s curvature form is a tensor valued two-form equivalent to the Riemannian curvature 

tensor. ECE theory is based on experimental data.  

                  In Section 2 the concept is introduced of the Hodge dual connection, and secondly 

the concept is introduced of the covariant derivative using the Hodge dual connection. 

Thereafter the proof of the Cartan Evans identity follows the proof of the Cartan Bianchi 

identity. In Section 2 it is given in all detail.  
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2. DETAILED PROOF 

                   In previous work {2-10} it has been shown that the Riemannian connection is 

antisymmetric in its lower two indices. This follows as soon as the Riemannian torsion is 

properly taken into account. In the obsolete physics known as “the standard model”, the 

torsion was incorrectly assumed to be zero, and the connection incorrectly assumed in 

consequence to be symmetric in its lower two indices. The Riemannian torsion tensor is 

defined as:  

                                                                ���
ĸ  : =  Г��

ĸ  −  Г��
ĸ                                        (2) 

and is antisymmetric in its lower two indices as is well known. This antisymmetry follows 

from the fundamental equation of Riemannian geometry {1 - 10}:   

                                                   [��, ��] �� =  ����
�

 �� −  ���
� ���ρ                      (3) 

where the antisymmetric commutator of covariant derivatives acts on the vector  �� in any 

spacetime of any dimension in the Riemannian manifold. In eq. ( 3)  ����
�

 is the curvature 

tensor in the Riemannian manifold. Thus, from eq. (2) in (3):  

                                                     [��, ��] �� =  −  Г��
� ���ρ + …                           (4) 

and the connection must be antisymmetric in its lower two indices:  

                                                                     Г��
�  = − Г��

�                                               (5) 

simply because its indices are those of the antisymmetric commutator. If:  

                                                                          µ = ν                                                 (6) 

then the commutator and connection both vanish, as do the torsion and curvature tensors. The 

error of the obsolete physics was:  

                                                                 Г��
�  = Г��

�  ≠ ? 0                                          (7)
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and this was perpetuated uncritically for ninety years. This means that the cosmology of the 

standard model was meaningless, and has been replaced {1 - 10} by ECE cosmology based 

on torsion.  

              The antisymmetry of the connection as in Eq. (5) means that its Hodge dual in four 

dimensions is {1 - 10}:  

                                         ���
�  : =   Г���

�  =  ½ ǁgǁ
½

 ���
 !

 Г !
�                                        (8) 

where  ǁgǁ
½

 is the square root of the modulus of the determinant of the metric, a weighting 

factor, and where the totally antisymmetric unit tensor  ���
 !

 is defined {1} in Minkowski 

spacetime, not the general spacetime. It is well known that the connection does not transform 

as a tensor under the general coordinate transformation, but the antisymmetry in its lower two 

indices means that its Hodge dual may be defined for each upper index of the connection as 

in eq. (8). The antisymmetry of the connection as in Eq. (8) is the basis for the Cartan Evans 

identity, a new and fundamental identity of differential geometry. In ECE theory {2 - 10} it 

becomes the inhomogeneous field equation. Note carefully that the torsion is a tensor, but the 

connection is not a tensor. The same is true of the Hodge duals of the torsion and connection.  

 With these fundamental definitions take the Hodge duals either side of Eq. (3) using:  

                                           [�� , ��]HD = ½ ǁgǁ
½

 ���
 !

 [� , �!]                             (9) 

                                                      �� ���
�

  = ½ ǁgǁ
½

 ���
 !

 �� !

�
                                  (10) 

                                                 ����
�   = ½ ǁgǁ

½
 ���

 !
 � !

�                                      (11) 
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Thus:  

                                     [�  , �!]HD �
�=  ��  !

�
�� −  �� !

� ����                                  (12) 

Re-label indices in Eq. (12) to give:  

                                      [�� , ��]HD �
�=  �� ���

�
�� −  ����

� ����                                (13) 

The left hand side of this equation is defined by {1 - 10}:  

                                   [�� , ��]HD �
� : = ��(����) − �� (����)                         (14) 

where  the  covariant derivatives must be defined by the Hodge dual connection defined in 

Eq. (8 ): 

                                                       ���� = ∂µ�� + ���

�
��                                      (15) 

                                                        ���� = ∂ν�� + ���

�
��                                      (16) 

Working out the algebra of Eq. (14) (see paper 99 on www.aias.us):  

                                                             ����
�  =  ���

�  −  ���
�                                      (17) 

                                       �����
�  =  ∂µ ���

�  − ∂ν ���
� + ���

�  ���
�  − ���

�  ���
�                 (18) 

These are the Hodge dual torsion and curvature tensors of the Riemannian manifold.  

                 Now prove the Cartan Evans identity as follows. The identity is:  

                                              d ^ ��
�
 + 	


� ^ �" 
 : =  �� 

� ^ �
                        

                                                                                   : = D ^ ��
�
                          (19) 

In tensorial notation in the Riemannian manifold Eq. (19) becomes {1 -10}:  

                                �� ����
�  + �� ����

�  + �� ����
�   : =  �����

�  +  �����
�  +  �� ���

�           (20)
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Now proceed to prove Eq. (20) in exactly the same way as proofs given of the Cartan Bianchi 

identity (for example in paper 102 of www.aias.us). It is required to prove that:  

                                   #� ����
�  + 	�


�  ����

  + … =  �����

� ��
� + …                              (21) 

By definition { 1 - 10}:  

                                                                        ����
�  = (���

�  − ���
� ) ��

�                          (22) 

so Eq. (21) is:  

                                   #�((  ���
�  − ���

�  ) ��
� ) + 	�


� (  ���
�  − ���

�  ) ��

 + ...           

                                                                                        : =   �� ���
� ��

� + …                    (23) 

The Leibniz rule gives:  

                                   #�((  ���
�  − ���

�  ) ��
� ) = ��

�#�(  ���
�  − ���

�  ) 

                                                                                      + (  ���
�  − ���

�  ) #���
�              (24) 

So Eq. (23) becomes:  

                          (#����
�  − #� ���

� ) ��
� + ( #���

� + 	�

� ��


) ( ���
� − ���

� )  

                                                                             + ...     : =   �����
� ��

� + …                   (25) 

Re-label summation indices to give:  

                           (#����
�  − #�  ���

� ) ��
� + ( #���

� + 	�

� ��


) ( ���
� − ���

� )  

                                                                             + ...     : =   �����
� ��

� + …                   (26) 

Use the tetrad postulate with the Hodge dual connection defined in Eq. (8):  

                                                        #���
� + 	�


� ��

 = ���

�  ��
�                                   (27) 
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This tetrad postulate follows from Eqs. (8) and (19) and the tetrad postulate has been proven 

rigorously in many ways in previous work {2 - 10}, so:  

                                           (#����
�  − #�  ���

� ) ��
� + ���

�  ( ���
� − ���

� ) ��
�

 

                                                                                + ...   : =   �����
� ��

� + …                  (28) 

A solution of Eq. (26) is:  

#����
�  − #� ���

�  + ���
�  ( ���

� − ���
� ) + #����

�  − #� ���
�  + ���

�  ( ���
� − ���

� ) + 

           #����
�  − #� ���

�  + ���
�  ( ���

� − ���
� )    : =  �� ���

�  +  �����
�  +  �� ���

�            (29) 

Rearrange terms on the left hand side of Eq. (29) to give an exact identity:  

 �����
�  +  �����

�  +  �� ���
�  = #����

�  − #� ���
� + ���

� ���
�  − ���

�  ���
�                                

                                    + #����
�  − #�  ���

�  + ���
� ���

�  − ���
�  ���

�  

                                    + #����
�  − #� ���

�  + ���
� ���

�  − ���
�  ���

�                        (30) 

where by definition:  

 �����
�  = #����

�  − #� ���
� + ���

� ���
�  − ���

�  ���
�  

 �����
�  = #����

�  − #� ���
�  + ���

� ���
�  − ���

�  ���
�  

 �� ���
�  = #����

�  − #� ���
�  + ���

� ���
�  − ���

�  ���
�                                                  (31) 

Quod erat demonstrandum.  

                   It is seen that the Cartan Evans identity is based on the fundamental definition of 

the Hodge dual curvature, and adds three of them in cyclic permutation.  

                   By using the definition:  

                                                        ����
�  = ��

�  ����
�                                                     (32) 
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it follows that:  

                                               ��  ����
�  = ( ���ĸ

� )  ����
ĸ  + �ĸ

� ���"��
ĸ                         (33) 

using the Leibniz rule. Use the tetrad postulate:  

                                                  ���ĸ
� =  0                                                             (34) 

to find that:  

                                               ��  ����
�  = �ĸ

� ���"��
ĸ                                                   (35) 

It follows that:  

              ���"��
ĸ  + ���"��

ĸ  + ���"��
ĸ  : =  �����

ĸ  +  �����
ĸ  +  �� ���

ĸ                               (36) 

which may be rewritten as:  

                                             ���ĸ�� : =  ��
ĸ��

                                                        (37) 

The easiest way to see this is to take a particular example:  

               �$�"%&
ĸ  + �&�"$%

ĸ  + �%�"&$
ĸ   : =  �� $%&

ĸ  +  �� &$%
ĸ  +  �� %&$

ĸ                               (38) 

and take Hodge duals term by term to find:  

            �$�ĸ'$+ �&�ĸ'&+ �%�ĸ'% ∶=  �$
ĸ'$ + �&

ĸ'& + �%
ĸ'%                               (39) 

which is an example of Eq. (37), Q.E.D. 

                     Eq. (37) is the most useful format of the Cartan Evans identity. In this format the 

Cartan Bianchi identity is {1 - 10}:  

                                               ��  �" ĸ�� : =   ���
ĸ��

                                                    (40) 

The error (7) works its way through all of the obsolete and incorrect cosmology, which 

should be discarded by scholars. It has been shown by computer algebra (papers 93 onwards 

of www.aias.us) that all the metrics of the Einstein field equation in the presence of matter 

give the erroneous result: 



10 

 

                                                  �ĸ�� = ? 0   ,    ��
ĸ��%

 ≠ ? 0                                   (41) 

                    Finally, the covariant derivative in Eq. (37) is defined by the rule for taking a 

covariant derivative of a rank three tensor { 1 - 10}:  

                                  ���"��
ĸ  = #�  �"��

ĸ  + ���
ĸ  �"��

�  − ���
�  �"��

ĸ  − ���
�  �"��

ĸ                  (42) 

(see reference (1) and papers 50, 100, 102 and 109 for example on www.aias.us). Eq. (42) 

uses the  � connection defined in Eq. (8). Similarly, Eq. (37) uses the  � connection and Eq. 

(40) uses the  Г connection.  The covariant derivative in Eq. (19) is defined by the covariant 

derivative of Cartan geometry {1 - 10}:  

                                                    D Λ �" � : =  d Λ �" � + 	

� ^ �" 
                              (43) 

where the spin connection must be defined in terms of the  � connection by the tetrad 

postulate with  � connection:  

                                                �� ��
� = #���

� + 	�

� ��


 − ���
� ��

� = 0                      (44) 

One of the novel inferences of the Cartan Evans identity is that there is a Hodge dual 

connection in the Riemannian manifold in four dimensions. This is a basic discovery, and 

may be developed in pure mathematics using any type of manifold. However that 

development is not of interest to physics by Ockham’s Razor, and the need to test a theory 

against experimental data.  
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